Pair-Linking for Collective Entity Disambiguation: Two Could Be Better Than All
نویسندگان
چکیده
Collective entity disambiguation, or collective entity linking aims to jointly resolve multiple mentions by linking them to their associated entities in a knowledge base. Previous works largely based on the underlying assumption that entities within the same document are highly related. However, the extend to which these mentioned entities are actually connected in reality is rarely studied and therefore raises interesting research questions. For the first time, this paper shows that the semantic relationships between mentioned entities within documents are in fact less dense than expected. This could be attributed to several reasons such as noise, data sparsity and knowledge base incompleteness. As a remedy, we introduces MINTREE, a new tree-based objective for the problem of entity disambiguation. The key intuition behind MINTREE is the concept of coherence relaxation which utilizes the weight of a minimum spanning tree to measure the coherence between entities. Based on this new objective, we devise a novel iterative solution for MINTREE optimization problem which we call Pair-Linking. The idea of Pair-Linking is simple: instead of considering all the given mentions, Pair-Linking iteratively selects the pair with highest confidence at each step for decision making. Via extensive experiments on 8 publicly available benchmark datasets, we show that our approach is not only more accurate but also surprisingly faster than many state-of-the-art collective linking algorithms.
منابع مشابه
The Effect of Transitive Closure on the Calibration of Logistic Regression for Entity Resolution
This paper describes a series of experiments in using logistic regression machine learning as a method for entity resolution. From these experiments the authors concluded that when a supervised ML algorithm is trained to classify a pair of entity references as linked or not linked pair, the evaluation of the model’s performance should take into account the transitive closure of its pairwise lin...
متن کاملAn Approach to Collective Entity Linking
Entity linking is the task of disambiguating entities in unstructured text by linking them to an entity in a catalog. Several collective entity linking approaches exist that attempt to collectively disambiguate all mentions in the text by leveraging both local mention-entity context and global entity-entity relatedness. However, the complexity of these models makes it unfeasible to employ exact...
متن کاملEntity Disambiguation using Freebase and Wikipedia
This thesis addresses the problem of entity disambiguation, which involves identifying important phrases in a given text and linking them to the appropriate entities they refer to. For this work, information extracted from both Freebase and Wikipedia served as the knowledge base. A fully functional entity disambiguation tool is made available online and the challenges involved in each stages of...
متن کاملGraph Ranking for Collective Named Entity Disambiguation
Named Entity Disambiguation (NED) refers to the task of mapping different named entity mentions in running text to their correct interpretations in a specific knowledge base (KB). This paper presents a collective disambiguation approach using a graph model. All possible NE candidates are represented as nodes in the graph and associations between different candidates are represented by edges bet...
متن کاملEstimating the Parameters for Linking Unstandardized References with the Matrix Comparator
This paper discusses recent research on methods for estimating configuration parameters for the Matrix Comparator used for linking unstandardized or heterogeneously standardized references. The matrix comparator computes the aggregate similarity between the tokens (words) in a pair of references. The two most critical parameters for the matrix comparator for obtaining the best linking results a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1802.01074 شماره
صفحات -
تاریخ انتشار 2018